Astrophoto Lab
--- your online source for astronomical & satellite images ---

A Shocking Surprise in Stephan's Quintet
Home
Welcome!
General Information
Special Galleries
AstroIndex
EarthIndex
Deep Space
Galaxies
Nebulae
Stars, Supernovae
Solar System
Earth from Space
NASA Space Programs
Other Astro Images
Posters
Space Image Gallery
Useful Links
Credits & Useage
Feedback
Signup
Name: Stephan's Quintet, NGC 7317, NGC 7318a, NGC 7318b, NGC 7319, NGC      7320
Description: Interacting Galaxies
Position (J2000): RA 22h 36m 1.1s   Dec 33° 57' 59.8"
Constellation: Pegasus
Distance: 300,000,000 Light Years
Field of View: 4.4 x 4.4 arcminutes
Orientation: North is 0.1° left of vertical
Image Credit: NASA/JPL-Caltech/Max-Planck Institute/P. Appleton (Spitzer      Science Center/Caltech)
Release Date: March 2, 2006




Other Images:   Hubble: G0925c     Spitzer: G0608     Chandra: G0907a

Click the image to buy a print
+
—————————————————————————————————————————————————

ABOUT THIS IMAGE:

This false-color composite image of the Stephan's Quintet galaxy cluster clearly shows one of the largest shock waves ever seen (green arc), produced by one galaxy falling toward another at over a million miles per hour. It is made up of data from NASA's Spitzer Space Telescope and a ground-based telescope in Spain.

Four of the five galaxies in this image are involved in a violent collision, which has already stripped most of the hydrogen gas from the interiors of the galaxies. The centers of the galaxies appear as bright yellow-pink knots inside a blue haze of stars, and the galaxy producing all the turmoil, NGC7318b, is the left of two small bright regions in the middle right of the image. One galaxy, the large spiral at the bottom left of the image, is a foreground object and is not associated with the cluster.

The titanic shock wave, larger than our own Milky Way galaxy, was detected by the ground-based telescope using visible-light wavelengths. It consists of hot hydrogen gas. As NGC7318b collides with gas spread throughout the cluster, atoms of hydrogen are heated in the shock wave, producing the green glow.

Spitzer pointed its infrared spectrograph at the peak of this shock wave (middle of green glow) to learn more about its inner workings. This instrument breaks light apart into its basic components. Data from the instrument are referred to as spectra and are displayed as curving lines that indicate the amount of light coming at each specific wavelength.

The Spitzer spectrum showed a strong infrared signature for incredibly turbulent gas made up of hydrogen molecules. This gas is caused when atoms of hydrogen rapidly pair-up to form molecules in the wake of the shock wave. Molecular hydrogen, unlike atomic hydrogen, gives off most of its energy through vibrations that emit in the infrared.

This highly disturbed gas is the most turbulent molecular hydrogen ever seen. Astronomers were surprised not only by the turbulence of the gas, but by the incredible strength of the emission. The reason the molecular hydrogen emission is so powerful is not yet completely understood.

Stephan's Quintet is located 300 million light-years away in the Pegasus constellation.

This image is composed of three data sets: near-infrared light (blue) and visible light called H-alpha (green) from the Calar Alto Observatory in Spain, operated by the Max Planck Institute in Germany; and 8-micron infrared light (red) from Spitzer's infrared array camera